Climate Transition: Subsidies v. Carbon Tax
Discussion of Fries and Aghion et al.

Neil R. Mehrotra
Federal Reserve Bank of Minneapolis

The views expressed here are the views of the author and do not necessarily represent the views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

Peterson Institute - Macroeconomics of Climate Action
June 5, 2023
SUMMARY

Fries paper:
- Question: What is the macroeconomic rationale for sequencing clean energy subsidies before a carbon tax?
- Insight: Clean energy becomes more substitutable for fossil energy as clean energy capital stock grows
- Implication: Microeconomic and macroeconomic factors favor subsidies

Aghion et al. paper:
- Question: Was shale boom beneficial for the clean energy transition?
- Insight: Directed technical change results in excessive innovation in fossil technologies
- Implication: Both subsidies and carbon tax needed to implement transition
MACROECONOMIC FRAMEWORK

SETUP (BMW 2023)

Household/utilities investment problem:

\[
\max \sum_{t=0}^{\infty} \beta^t u(C_t)
\]

subject to

\[
C_t + p^c_t I_t^c + p^f_t I_t^f = p^e_t E_t + \tau_c K_t^c - \tau_f K_t^f - T_t + W_t \bar{N}
\]

\[
E_t = G \left(K_t^c, K_t^f \right)
\]

\[
K_t^i = I_t^i + (1 - \delta_i) K_t^i \quad i \in \{c, f\}
\]

Output and electricity demand:

\[
Y_t = F \left(E_t, \bar{N} \right)
\]

\[
p^e_t = F_e \left(E_t, \bar{N} \right)
\]
Clean energy subsidy is a supply-side policy: lower energy prices, higher output, productivity and wages.
Optimal climate policy

Setup

\begin{align*}
\max & \sum_{t=0}^{\infty} \beta^t [u(C_t) - d(S_t)] \\
C_t + p_t^c I_t^c + p_t^f I_t^f &= F(E_t, \bar{N}) \\
E_t &= G(K_t^c, K_t^f) \\
K_{t+1}^i &= I_t^i + (1 - \delta_i) K_t^i \quad i \in \{c, f\} \\
S_{t+1} &= S_t + \kappa K_t^f
\end{align*}

- Planner internalizes the environmental damage externalities from the fossil fuel capital

- Planner’s resource constraint depends only on underlying technologies: \(p_t^c, p_t^f, G(\cdot, \cdot) \)
OPTIMAL POLICY LEAVES CLEAN ENERGY MARGIN UNDISTORTED

Utilities capital choice under subsidies/tax:

\[
p_c^t = \frac{1}{1 + r_t} \left[(p_{t+1}^e + \tau_{t+1}^c) G_c (K_{t+1}^c, K_{t+1}^f) + p_{t+1}^c (1 - \delta_c) \right]
\]

\[
p_f^t = \frac{1}{1 + r_t} \left[(p_{t+1}^e - \tau_{t+1}^f) G_f (K_{t+1}^c, K_{t+1}^f) + p_{t+1}^f (1 - \delta_f) \right]
\]

Planner’s allocation:

\[
p_c^t = \frac{1}{1 + r_t} \left[p_{t+1}^e G_c (K_{t+1}^c, K_{t+1}^f) + p_{t+1}^c (1 - \delta_c) \right]
\]

\[
p_f^t = \frac{1}{1 + r_t} \left[p_{t+1}^e G_f (K_{t+1}^c, K_{t+1}^f) + p_{t+1}^f (1 - \delta_f) \right] - \mu_{t+1} \kappa
\]

- The electricity production function \(G \left(K_t^c, K_t^f \right) \) could be variable elasticity of substitution, but implies zero subsidy
Tax v. Subsidy under Innovation

Setup

\[
\max \sum_{t=0}^{\infty} \beta^t [u(C_t) - d(S_t)]
\]

\[
C_t + p_t^c I_t^c + p_t^f I_t^f = F(E_t, \bar{N})
\]

\[
E_t = G(K_t^c, K_t^f)
\]

\[
K_{t+1}^i = I_t^i + (1 - \delta_i) K_t^i \quad i \in \{c, f\}
\]

\[
S_{t+1} = S_t + \kappa K_t^f
\]

\[
p_{t+1}^i = p_t^i \left(1 - \eta_i s_t^i\right) \quad i \in \{c, f\}
\]

\[
1 = s_t^c + s_t^f
\]

- Adaption of Acemoglu, Aghion, Bursztyn, and Hemous (2012)

- How does the planner allocate innovation effort between clean and fossil fuel energy?
IS THE PRIVATE ALLOCATION OF INNOVATION SUB-OPTIMAL?

Optimal allocation of innovation:

\[v^i_i = \frac{1}{1 + r_t} \left[I^i_{t+1} + v^i_{t+1} \left(1 - \eta^i_{i} s^i_{t+1}\right) \right] \quad i \in \{c, f\} \]

\[v^c_i \eta^c p^c_t = v^f_i \eta^f p^f_t \]

Discussion:

- The planner’s allocation decision is undistorted relative to private sector allocation and optimal subsidy is zero

- Why does AABH (2012) and AABH (2023) find otherwise?

- Private sector innovation decisions is insufficiently forward-looking (static in AABH (2023))
INNOVATION AND PRICE MECHANISM

Role for research subsidies in AABH (2012) and successors:

▶ Innovation is generically undersupplied due to investment horizon and market structure

▶ Innovation in clean energy is disproportionately impacted due to low scale and low initial productivity

Inflation Reduction Act subsidies rely on price mechanism:

▶ IRA investment and production incentives induce upstream innovation only indirectly

▶ Justification for IRA incentives reliant on scale effects in manufacturing ("learning-by-doing") or financial frictions
SHALE BOOM AND CLEAN ENERGY INNOVATION

- AABH (2023) model shale boom as productivity shock to natural gas energy production and extraction

- Fracking innovation has no applications for clean energy energy production in their model

- Fracking and, more generally, fossil fuel technologies may have important applications for clean energy
 - Enhanced geothermal requires fracturing hot rock formations and achieving greater drilling depths
 - Existing carbon capture used for enhanced oil recovery; techniques may be used for sequestration